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SUMMARY

Any variation in initial temperature, retort temperature and most markedly heating
factor can lead to insufficient sterilisation of canned foods. Statistical methods are
presented here as an alternative to worst case scenario approaches for prediction of
sterilisation values. If variation is known to exist, sufficient sterilisation can be
ensured by extending processing times. This may, however, contribute to a greater
loss of product quality. To avoid this it is preferable to minimise variability,
particularly in heating factor. Whether or not this is possible, statistically valid
predictions can be made for the percentage of products which will be sterilised to an
adequate level. Results for a product with a heating factor normally distributed with
mean 50 and standard deviation 3.5 minutes, processed in UT cans (73 mm diameter
x 115 mm height) show F, values which appear to be approximately log,,- normally
distributed. Assuming this distribution allows the likelihood that the F,, is less than,
for example,

6 minutes to be derived from statistical tables. This approach could be helpful for use
in process validation or improvement activities.
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1. INTRODUCTION

In-container heat sterilisation is a very important method used in the production of
shelf stable foods. This process is used both to destroy micro-organisms, spores and
enzymes as well as to cook the product. If the sterilisation time is too short there is a
real danger of microbial survival which could lead to an outbreak of food poisoning.
At the same time, if the product is over processed then quality could be affected in
terms of nutritional and organoleptic properties.

To optimise the thermal processing of foods it is important to be able to measure or
predict how the temperature changes throughout the food during the process.
Discovering which point inside the food will be the coldest and monitoring the
temperature at this point is the best way to ensure that the product is fully sterilised.

The use of mathematical models can be beneficial in this area. By determining the
thermophysical properties of a food product, accurate predictions can be made of the
temperature evolution within a food during heating, as shown by McKenna and
Tucker (1991) as well as Tucker, ef a/ (1996). Simulation techniques have the distinct
advantage that once the model is in place it is very simple to investigate the effects
that variations in parameters have on lethality. In the past, this has tended to be done
by selecting a parameter which is thought to be particularly influential and running the
simulation with a variety of values within a given range. This is a useful practice, but
does not fully uncover the random variation present in any real process.

In this work statistical techniques are used to evaluate the effects of random variations
inherent in sterilisation processes. These include the random variation of initial
temperature of food products, variation in thermophysical properties and also retort
temperature which fluctuates throughout the process. This approach can greatly help
in making informed decisions about the likelihood of a product not receiving an
adequate heat process.

2. MODELLING CRITERIA AND METHODS
2.1 Model Equations

For many food types, the rate of change of temperature (T) with time (t) is equal to the
supply by heat conduction. The temperature within a cylindrical can will vary along
its radius (r) and its height (x). The equation for heat conduction governing
temperature inside a cylindrical can is given by

2 2
o o 027 1o1]
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for v the thermal diffusivity of the product. The thermal diffusivity is product
dependent and will determine how quickly the product is heated. The temperature
within the product is assumed to be constant at the beginning of heating. Cans are
made from a highly conductive material. This means that the temperature at the very
edge of the product is approximately equal to the retort temperature.
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In the majority of cases, the thermal diffusivity will not be available due to the
complexities of a multi-component product. When this is the case, an apparent
thermal diffusivity is derived from the product heating rate or f, value. For a finite
cylindrical container with radius R and half-height H, the formula given by Ball and
Olson (1957) is
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This formula is derived from the first term approximation to the analytical solution to
the heat conduction equation for a finite cylinder.

2.2 Monte Carlo Method

The definition of a Monte Carlo method is a heuristic mathematical technique for
evaluation or estimation of intractable problems by probabilistic simulation and
-sampling. This essentially means a simulation which uses random numbers. The
product initial temperature and f;, value are picked from normal distributions at the
start of the simulation and then kept constant for the duration of the process. The
values are selected using NAG FORTRAN library routines. The distributions could
equally have been generated using methods outlined by Law and Kelton (1991) if
these routines had not been available.

2.3 Time Series Method

The definition of Time Series is a sequence of data indexed by time, often comprising
uniformly spaced observations (Mendenhall and Sincich, 1989). Here a Time Series
simulation is used for the retort temperature, Ti. This is done by splitting the retort
temperature into a general trend, a cyclic variation caused by a temperature controller
device, and a residual component (Varga, 1995). The retort temperature is

T, = General Trend + Cyclic Variation + Residual

For this work it has been assumed that there is no variation caused by a temperature
controller device, i.e. there is no cyclic term. The residual component is chosen in
such a way that it is not completely random. This is because if the residual at time t
(R is positive then it is more likely that the residual at time t+1 (R,,;) will also be
positive rather than negative. In other words the residual is unlikely to jump from
being large and positive to being large and negative, it is far more likely to go from
being large and positive to a larger or smaller positive value. This does not mean that
if the residual is large and positive at one point in time it will be for all points in time,
merely that there will be no large jumps. For the residual, the definition used was

R, =0R, + 8(0,02)

Here € is a normally distributed random error component. ¢ is taken in the range
0< ¢ <1 and is a measure of how dependent the retort temperature at a particular time
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is on the retort temperature at the previous time step. The value of ¢ used in a
simulation will depend on the size of time step used. For a small time step size it is
expected that the retort temperature will be very dependent on that at the previous
time step. For a longer time step the relationship between retort temperatures at
consecutive time steps may appear more random.

In this work, the trend for the retort temperature will involve a come up time and a
holding period. The temperature will thus comprise of two straight lines, an example
of which is illustrated in Figure 1, where no random variation occurs. During the
come up time the temperature will rise linearly from an initial value to the holding
temperature. The temperature will then remain constant until the end of the process.

It is not possible to find an analytical solution to the above set of equations, so instead
a numerical solution procedure has been used. Stochastic equations of this kind have
been investigated by Nicolai and De Baerdemaeker (1992) using a finite element
technique. As an alternative to this, a finite difference scheme was used. The
governing equations have been solved numerically using an Alternating Direction
Implicit (ADI) finite difference scheme (Fletcher, 1991).

3. RESULTS AND DISCUSSION

In this section, several examples are given which isolate the effect of random variation
in each of the various parameters. Also in this section, ways of reducing the
likelihood of not achieving a required sterilisation value whilst minimising the chance
of over processing are investigated.

The model can be used to predict the temperature at any point within the cylindrical
container. It is the coldest point within the container which is of interest and this is
assumed to be the centre point, as is usual during conduction heating. In fact, it is not
the actual temperature that is of interest, but the sterilisation value (F) at this point, as
described by Lopez (1987). This value is equivalent to the number of minutes
required to destroy a specified number of spores at a reference temperature for a given
z value. The z value denotes the temperature change required to effect a tenfold
change in time to achieve the same lethal effect. The reference temperature (T,) is
generally taken to be 121.1°C and a z value of 10°C is used for the heat resistant
spores of Clostridium botulinum; these are the values used here to give F,.

The lethal rate (LR) can then be calculated for each minute as

LR =10"""

the F value for the whole process is then the sum of the lethal rates effective in each
minute of the process. Alternatively the F value can be calculated as

F= t.l.lo(T()’)‘Tmf)/Z dy
0
from the evaluated time/temperature history.

In this first example, no random variation is allowed for; this is the control that all
cases will be compared with. The retort profile used is shown in Figure 1, along with
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the centre temperature of the product. The retort temperature is split into an initial
come up period of five minutes, followed by a holding period of eighty five minutes.
The product has an initial temperature of 20°C and an f;, of 50 minutes. The
dimensions chosen for the cylinder are those of a UT can (73 mm diameter x 115 mm
height). Using the process outlined, the resultant F,, value is 6.6 minutes.

140 1
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Figure 1: Time/temperature profile for retort and product centre.

Varying each of the parameters in turn, the F, values found can be compared with that
in the control example. Firstly, the only random variation considered is in the f;,
value. f; has been randomly picked from a normal distribution with mean 50 minutes
and standard deviation 3.5 minutes. The 100 f;, values selected from this distribution
actually have mean 50.5 minutes and standard deviation 3.5 minutes. The frequency
distribution of the f;, values is shown in Figure 2. The corresponding F, values have
mean 6.6 and standard deviation 2.2 minutes and the frequency distribution of F,,
values is shown in Figure 3.
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Frequency

Figure 2: Frequency distribution showing a sample of f, values, randomly picked from a normal
distribution with mean 50 minutes and standard deviation 3.5 minutes. The sample mean and
standard deviation are 50.5 and 3.5 minutcs.

As f;, values are randomly picked from a normal distribution, they themselves will be
approximately, but not exactly, normal as can be seen in Figure 2. Any deviation
from normality influences the shape of the resultant F,, distribution. However, by
taking a large sample, the distribution of values is a good approximation to a normal
distribution.

The corresponding F, distribution shown in Figure 3 does not have the distinctive
shape of a normal distribution as it is skewed to the right. This is because with such
an amount of variation in f;, in order for the F, distribution to be normal it would need
to be possible for F,, to take a negative value, which is not possible. This means that
although the distribution looks approximately normal to the right of the mean, this is
not the case to the left of the mean.

It seems likely that if thermal properties include normal random variation, then centre
temperatures will also be normally distributed and likewise F, values. Figure 3 shows
this not to be the case for F, values. However, if the centre temperatures are indeed
normally distributed, it seems probable that the F,, distribution can be transformed into
one which is normal. The definition of F, value led to the investigation as to whether
log,, F, is normally distributed. The corresponding frequencies are plotted in Figure
4. The distribution does seem to have the characteristic normal shape.
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Figure 3: The effect of variation in f, value on F,. The f, values used were sampled from a

normal distribution with mean 50 and standard deviation 3.5 minutes. The frequency
distribution shows F, values with mean and standard deviation 6.6 and 2.2 minutes.
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Figure 4: Variation in f, value gives rise to variation in F,. By taking the log,, of F, values a

distribution with normal characteristics is found.
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To investigate this further, expected frequencies can be compared with observed
frequencies, as shown in Table 1. The expected frequencies are found from statistical
tables using the sample mean and standard deviation. This distribution fits very well,
and can now be used to assess the likelihood of not achieving a target F,,. For
example, if we would like to know the likelihood that F is less than 6 minutes, this
can be found from statistical tables to be approximately 43.6%. Similarly there is a
1.6% likelihood of obtaining an F, value below 3 minutes. By looking once again at
Figure 3 it can be seen that these figures are born out by the sample, so this

distribution seems a very good approximation.

F, (mins) log;oFo Observed Expected
Frequency Frequency
up to 2.8 up to 0.45 1 1
2.8-3.5 0.45-0.55 4 4
3.5-4.5 0.55-0.65 12 11
4.5-5.6 0.65-0.75 19 21
5.6-7.1 0.75-0.85 24 26
7.1-8.9 0.85-0.95 24 21
8.9-11.2 0.95-1.05 11 11
11.2-14.1 1.05-1.15 5 4
14.1-17.8 1.15-1.25 0 1

Table 1: Comparison of expected and observed frequencies for F, values resulting from f,
variation. Expected frequencies are calculated by assuming a log,,-normal distribution.

As speculated already, the skewness in the F, distribution seemed inevitable due to
the proximity of the mean value to zero, as well as the amount of variation. This led
to the investigation of what happens if the process time is extended so that the

mean F, value will be higher. Lengthening the holding time by 10 minutes, the
frequency distribution of F values is given in Figure 6 for the f;, distribution shown in
Figure 5. Figure 6 demonstrates that the distribution of F,, values is indeed less
skewed, being far closer in shape to a normal distribution. However, by looking also
at the distribution of log;,F, values in Figure 7 it can once again be seen that the
distribution is close to the classic bell shape, although this time the distribution is
slightly skewed to the left.
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Figure 5: Frequency distribution of f, values. These are sampled from a normal distribution
with mean 50 minutes and standard deviation 3.5 minutes. This sample has mean 50.2 and

standard deviation 3.6 minutes.
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Figure 6: By lengthening the process time the mean F; value can be raised. For a mean F, which
is not close to zero, the distribution is close to normal. F, values with mean 12.0 and standard

deviation 3.3 minutes result from f; variation.
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These results seem to indicate that for a relatively low F, particularly with a
reasonable amount of variation, by taking log;, of F, a distribution which is
approximately normal can be found. As the mean value of F,, increases, the F,,
distribution becomes increasingly less skewed and closer itself to a normal
distribution. Consequently, the log,, F, distribution becomes less normal as its
skewness increases. This seems to indicate that, depending on the range of F, values,
either the normal or the log;, -normal distribution will give the best approximation.

Frequency

L

Figure 7: When F values are approximately normal, taking the log,, of F, gives a skewed
distribution.

The next step was to investigate the effect of a randomly varying initial temperature.
In this case 100 values of initial temperature have been picked from a normal
distribution with mean 20°C and standard deviation 2.5°C. The sample of size 100
has mean 20.3°C and standard deviation 2.3°C and is illustrated as a frequency
distribution in Figure 8. This range of initial temperatures leads to the range of F,,
values displayed in the frequency distribution of Figure 9. The F,, values have mean
6.7 minutes and standard deviation 0.2 minutes.
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Figure 8: Variation in initial temperature is simulated by sampling from a normal distribution
with mean and standard deviation 20°C and 2.5°C. This sample has mean 20.3°C and standard
deviation 2.3°C.
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Figure 9: Variation in initial temperature is less influential than f;, variation. A mean F of 6.7
with standard deviation 0.2 minutes results from initial temperatures sampled from a normal
distribution with mean 20°C.
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Figure 9 demonstrates that the initial temperature has far less effect on F,, than f;, value
did. Due to this, for this amount of variation in f;, the F distribution is clearly not
affected by the proximity of zero to the extent demonstrated in the previous cases.

In this case, the distribution does not look visibly skewed, and looks close to normal.
This seems to follow the trend of previous results, as with this small amount of
variation the closeness to zero is not a factor. Table 2 shows that the mean initial
temperature gives an F, value of 6.6 minutes. An initial temperature of the mean
minus one standard deviation gives an F;, of 0.2 minutes below the likely mean F,,
value, so it seems reasonable to take 0.2 minutes as the standard deviation of the F
population, assuming the population is approximately normal. The table shows that
this value works on all levels except the mean plus one standard deviation where the
initial temperature of 22.5°C gives an F,, of 6.9 minutes rather than the expected 6.8
minutes, although these values are very close.

Initial Temperature (°C) F,
(mins)

mean minus two standard 15.0 6.2
deviations

mean minus one standard 17.5 6.4
deviation

mean 20.0 6.6

mean plus one standard 22.5 6.9
deviation

mean plus two standard 25.0 7.1
deviation

Table 2: F, values corresponding to the mean and one and two standard deviations from the
mean initial temperature.

To demonstrate the effect that a varying retort temperature profile can have,
Ri;=0.5R, + €(0,0.25) has been used to generate retort temperature profiles, an
example of which is shown in Figure 10. Here R, and R, are the residual
components of the retort temperature at times t and t+1, which add random variation
to the trend. ¢=0.5 has been chosen fairly arbitrarily whilst bearing in mind that the
time step size relates to 30 seconds. This value of ¢ means that the retort temperature
has some reliance on the previous time steps temperature, but not as much as for ¢=1.
This seems reasonable for the length of time step selected, giving a variation of
approximately plus or minus one or two degrees. To reduce the variation, the
variance of 0.25 can be reduced in the € normal distribution. A frequency distribution
of F,, values for 100 different retort profiles generated in this way is illustrated in
Figure 11. The F values have mean 6.6 minutes and standard deviation 0.1 minutes.
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Figure 10: Retort temperature profile including random variation.
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Figure 11: A retort temperature profile which includes random variation results in an F,
distribution which is close to normal. F; values have mean 6.6 and standard deviation 0.1

minutes.
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Once again Figure 11 shows that the F; values show only a small amount of
variability and so appear to be approximately normally distributed. Also the mean F,,
is 6.6 minutes, the F,, value found in the control example.

Finally, all the previous work is brought together to look at what happens if the f;
value, the initial temperature and the retort temperature are varied simultaneously.
Here the initial temperature includes normal random variation with mean 20°C and
standard deviation 2.5°C; f; is normally distributed with mean 50 minutes and
standard deviation 1.5 minutes. The frequency distribution of Figure 12 shows f;
values, which have mean and standard deviation 50.3 and 1.4 minutes. The actual
mean and standard deviation for initial temperature are 19.8°C and 2.6°C, the values
shown on the frequency distribution of Figure 13. The retort temperature is generated
in the same way as for the previous example. This gives the range of F, values shown
in the frequency distribution in Figure 14, with mean 6.5 and standard deviation 0.8.
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Figure 12: Randomly varying f, can be used alongside randomly varying initial temperature and
retort temperature to investigate the combined effect on F,. This sample of f, values has mean
50.3 and standard deviation 1.4 minutes.
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Figure 13: A sample of initial temperature with mean 19.8°C and standard deviation 2.6°C.
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Figure 14: A combination of variation in initial temperature, f, and retort temperature gives F,
values which are approximately normal. The F, values have mean 6.5 and standard deviation 0.8

minutes.
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As could be expected from the previous results, the F,, distribution appears to be
approximately normal, as the variation in all parameters is relatively small. Once
again it is speculated that these values could quite adequately be approximated by a
normal distribution with mean 6.6 minutes.

The cases that have been looked at here have clearly shown that variation in heating
factor, initial temperature and retort temperature all lead to variation in sterilisation
values. Heating factor is clearly the most significant factor showing the

importance of consistency of thermal properties between products. Variation could be
caused by variation in the proportion of product components for example.

4. CONCLUSIONS

This work has shown just how important random variation can be when predicting
sterilisation values. Any variation in initial temperature, retort temperature and most
markedly heating factor can lead to insufficient sterilisation. It is usual to take a worst
case scenario approach to prediction of sterilisation values, and statistical methods
such as those presented here are an extremely useful alternative to this. By using this
type of technique it has been shown that minimising variation is all important, but
also that if this is not possible, predictions can be made as to what percentage of
products will be sterilised to an adequate level. It has been shown that if the heating
factor is normally distributed with mean 50 and standard deviation 3.5 minutes then
the associated F,, appears to be approximately log,,- normally distributed. In this case
the likelihood that the F, is less than 6 minutes can be found from statistical tables to
be approximately 43.6%, whilst an F;, of less than 3 minutes is expected in 1.6% of
cases. This type of information could be very helpful for use in process validaticn.

The results show that to reduce the likelihood of not achieving a required F;, value
either the average heating factor or initial temperature can be increased, the process
time extended, or the variation in these parameters reduced. It has been shown that if
the mean values are merely increased, the F distribution will simply be shifted and
become less skewed, so that by reducing the number of low values the amount of high
values is also increased as is the average value, as it is if the process time is simply
increased. This may contribute to a greater loss of product quality. If possible, it is
better to reduce variability, particularly in heating factor.
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