Contents

PART 1 CASE STUDIES IN HIGH PRESSURE AND PULSED ELECTRIC FIELD PROCESSING OF FOOD
PART 2 CASE STUDIES IN OTHER NOVEL FOOD PROCESSING TECHNIQUES
PART 3 CASE STUDIES IN FOOD PRESERVATION USING ANTIMICROBIALS, NOVEL PACKAGING AND STORAGE TECHNIQUES
PART 4 INNOVATIONS IN ADVANCED FOOD PROCESSING TECHNIQUES AND PREDICTIVE MICROBIAL MODELS: CASE STUDIES

Non-thermal food pasteurization processes: an introduction
P Chen, S Deng, Y Cheng, X Lin, L Metzger and R Ruan, University of Minnesota, USA
- Introduction
- Pulsed electric field
- High hydrostatic pressure
- Ionizing irradiation
- Ultraviolet radiation
- Non-thermal plasma
- Concentrated high intensity electric field
- Conclusions
- References

PART 1 CASE STUDIES IN HIGH PRESSURE AND PULSED ELECTRIC FIELD PROCESSING OF FOOD

Commercial high pressure processing of ham and other sliced meat products at Esteban Espuña S.A.
M Gassiot and P Masoliver, Esteban Espuña SA, Spain
- Introduction
- High pressure processing (HPP) equipment
- Commercialized HPP-treated food products
- Treatment costs
- Conclusions
- Company information
- References

High hydrostatic pressure processing of fruit juices and smoothies: research and commercial application
F Sampedro and X Fan, United States Department of Agriculture, Agricultural Research Service (USDA-ARS), USA and D Rodrigo, CSIC, Spain
- Introduction
- Fruit composition, high hydrostatic pressure (HHP) treatment and recommended fruit intake
- Basic research on (HHP) of fruit juices and derivatives
- Commercialization of juices treated by (HHP)
- Future trends
- Sources of further information and advice
- Acknowledgements
- References

Pulsed electric field systems for commercial food and juice processing
M A Kempkes, Diversified Technologies Inc., USA
- Introduction
- Key process parameters
- (PEF) system overview
- (PEF) system trade-offs and optimization
The environmental impact of pulsed electric field treatment and high pressure processing: the example of carrot juice  
*J Davis, The Swedish Institute for Food and Biotechnology, Sweden and G Moates and K Waldron, Institute of Food Research, UK*
- Introduction  
- Goal definition and scoping  
- Inventory of carrot juice processing  
- Choice of impact categories and impact assessment methods  
- Results  
- Discussion and conclusions  
- Acknowledgements  
- References

**PART 2 CASE STUDIES IN OTHER NOVEL FOOD PROCESSING TECHNIQUES**

**Industrial applications of high power ultrasonics in the food, beverage and wine industry**  
*D Bates, Cavitus Pty Ltd, Australia and A Patist, Cargill Inc., USA*
- Introduction  
- High power ultrasound  
- Process and scale-up parameters  
- Applications and benefits  
- Large scale implementation  
- Roadmap to successful commercialization  
- Conclusion  
- References

**The potential of novel infrared food processing technologies: case studies of those developed at the USDA-ARS Western Region Research Center and the University of California, Davis**  
*Z Pan and G G Atungulu, University of California Davis, USA*
- Introduction  
- Effect of infrared (IR) on food molecular constituents  
- Case studies in novel infrared (IR) technologies for improved processing efficiency and food safety  
- Simultaneous infrared blanching and dehydration (SIRBD)  
- Sequential infrared (IR) and freeze-drying of strawberry slices  
- Infrared (IR) pasteurisation of raw almonds  
- Infrared (IR) dry-roasting of almonds  
- An overview of infrared (IR) rough rice drying and disinfestation  
- Effectiveness of infrared (IR) heating for simultaneous drying and disinfestation of freshly harvested rough rice  
- Effectiveness of infrared (IR) heating for disinfestation of stored rough rice  
- Infrared (IR) radiation heating for tomato peeling  
- Future trends  
- Acknowledgement  
- References

**Validation and commercialization of dense phase carbon dioxide processing for orange juice**  
*K-L G Ho, Chiquita Brands International Inc., USA*
Progress and issues with the commercialization of cool plasma in food processing: a selection of case studies
P Sanguansri, K Knoerzer, J Coventry and C Versteeg, CSIRO Food and Nutritional Sciences, Australia
- Introduction
- Case studies
  - Case Study 1: cascaded dielectric barrier discharge (CDBD) – cool plasma for the decontamination of packaging materials
  - Case Study 2: atmospheric gliding arc and blown arc air cold plasma system
  - Case Study 3: atmospheric based dielectric gas discharge
  - Case Study 4: ultralight dielectric barrier discharge and spot system
  - Case Study 5: microwave vacuum cool plasma generation
  - Case Study 6: cool plasma for application in food processing and medical device technology
  - Case study 7: gentle e-ventus® disinfection of cereal crop seeds, grain and food
- Conclusions and future trends
- References
- Appendix

Commercial applications of ozone in food processing
R G Rice, RICE International Consulting Enterprises, USA
- Introduction
- Current commercial examples of ozone in agri-foods industries
- Ozone for shellfish and fish processing
- Ozone in breweries and wineries
- Ozone for vegetable processing and storage
- Ozone washing/packaging of fresh cut salad mixes and fruit
- Ozone processing of meats and sushi
- Ozone for preparation of fresh (not frozen) microwaveable meals
- Cleaning-in-place with ozone
- Future prospects for ozone in agri-foods and food processing
- References

Novel technologies for the decontamination of fresh and minimally processed fruits and vegetables
B A Niemira, United States Department of Agriculture, Agricultural Research Service (USDA-ARS), USA
- Introduction
- Optimisation of existing chemical treatments
- Antimicrobial treatments
- Adaptation of existing technologies: plasma, phage treatment and bacteria-based biological controls
- Future trends
- Sources of further information and advice
- Acknowledgements
- References

PART 3 CASE STUDIES IN FOOD PRESERVATION USING ANTIMICROBIALS, NOVEL PACKAGING AND STORAGE TECHNIQUES
Use of natamycin as a preservative on the surface of baked goods: a case study
J Delves-Broughton, L Steenson, C Dorko, J Erdmann, S Mallory, F Norbury and B Thompson, Danisco, USA
- Introduction
- Natamycin
- The problem of mold spoilage in baked goods
- Trials on the use of natamycin as a surface treatment of baked goods
- Considerations and selection of the spraying system
- Future trends
- References

Commercial application of oxygen depleted atmospheres for the preservation of food commodities
S Navarro, Food Technology International Consultancy Ltd, Israel
- Introduction
- Definitions and uses of oxygen depleted atmospheres
- Effects of modified atmospheres (MAs) on stored-product insects and mites
- The effect of MA on preventing mold growth and mycotoxin formation
- Effects of MA on product quality
- Generation and application of modified atmospheres (MAs)
- Types of structures used for modified atmospheres (MAs)
- Specific applications of modified atmospheres (MAs)
- Sources of further information and advice
- References

Commercialization of time-temperature integrators (TTIs) for foods
P S Taoukis, National Technical University of Athens, Greece
- Introduction: active and intelligent packaging – time-temperature integrators (TTIs)
- History of integrators (TTIs) – definition and principles of operation
- State of the art integrator (TTI) technologies
- Use of integrators (TTIs) as tools for food chain monitoring and management
- Use of integrators (TTIs) as shelf life indicators for consumers
- Factors in integrator (TTI) commercial success – industry and consumer attitudes
- Cases of integrator (TTI) application
- Future trends
- Acknowledgements
- References

Development of a nanocomposite meal bag for individual military rations
C Thellen, J A Ratto, D Froio and J Lucciarini, US Army Natick Soldier RD&E Center, USA
- Introduction
- Introduction of the Meal Ready-to-Eat TM (MRE)
- Research and development of the MRETM nanocomposite meal bag
- Future trends
- Sources of further information and advice
- References

PART 4 INNOVATIONS IN ADVANCED FOOD PROCESSING TECHNIQUES AND PREDICTIVE MICROBIAL MODELS: CASE STUDIES

Developments in in-container retort technology: the Zinetec Shaka® Process
R Walden, Zinetec Ltd and John Emanuel, Utek Europe Ltd, UK
- Introduction
- The Shaka® process
- Product quality and the Shaka® process
- Commercialization of the Shaka® process
- Future trends
- Sources of further information and advice
- References

**Industrial microwave heating of food: principles and three case studies of its commercialization**
*R Schiffmann, RF Schiffmann Associates, Inc., USA*
- Introduction
- Fundamental properties of microwaves
- How microwaves heat materials
- Industrial microwave equipment
- Case studies
- Conclusions

**Irradiation of fresh fruits and vegetables: principles and considerations for further commercialization**
*X Fan, United States Department of Agriculture, Agricultural Research Service (USDA-ARS), USA*
- Introduction
- Technology and dosimetry
- Application of irradiation on fresh produce
- Considerations and challenges for commercialization in the US
- Conclusions
- Sources of further information and advice
- Disclaimer
- References

**Consumer acceptance and marketing of irradiated meat**
*R F Eustice, Minnesota Beef Council, USA*
- Introduction
- Time to take a fresh look at irradiation
- History of irradiation of foods
- Education, the key to consumer acceptance
- Future trends
- Conclusion
- References

**Comparing the effectiveness of thermal and non-thermal food preservation processes: the concept of equivalent efficacy**
*M G Corradini, Universidad Argentina de la Empresa, Argentina and M Peleg, University of Massachusetts, Amherst, USA*
- Introduction
- Traditional microbial mortality kinetics and sterility measures
- Non-linear kinetics of microbial inactivation and deterioration processes involving nutrient or quality losses
- Equivalence criteria
- Freeware
- Conclusions
- Disclaimer
- References

**A case study in military ration foods: the Quasi-chemical model and a novel accelerated three-year challenge test.**
*C J Doona, F E Feeherry and E W Ross, US Army Natick Soldier RD&E Center, USA*
- Introduction
- Modeling S. aureus growth in intermediate moisture (IM) bread
- Microbial challenge study of maple filled French toast
- Results of the microbial challenge study
- Conclusions and future trends
- References