

Predictive microbiological models

What are they and how can they be used in the food industry?

PREDICTIVE MICROBIOLOGICAL MODELS: WHAT ARE THEY AND HOW CAN THEY BE USED IN THE FOOD INDUSTRY?

WHY USE MODELS?

Predictive microbiological models are tools that can be used to assess product shelflife and safety. Models can also be used:

- In product development
- To identify areas where challenge testing should be undertaken
- As a tool with HACCP and risk assessment plan development

THE SCIENCE

Predictive microbiological models are computer based software packages which allow the user to estimate the rate of microbial growth or get an indication of whether growth of a particular microorganism will occur under a specified set of conditions.

The models are based on laboratory generated data. Microbiological growth media (broths) are produced with different instrinsic parameters such as pH and salt level and are then inoculated with the relevant organism or cocktail of organisms. These broths are then stored at a range of temperatures and the microbial level present is assessed over time. These are known as **kinetic growth models**, as they allow assessment of the amount of growth that can occur.

A different approach is to note time to turbidity rather than assess microbial levels. These are **growth/no growth** or **time to growth models**, as they cannot estimate the level of growth, but simply if growth occurs.

Once the data is generated, statistical equations are fitted and these are then combined with a user-friendly interface.

Predictive models have been developed for both spoilage and pathogenic organisms and there are both growth and survival models available for use. The models will usually include the following variables:

- Temperature of storage, including fluctuating temperatures.
- pH.
- Salt or equivalent water activity.

Some models also take into account levels of preservatives such as nitrite, CO_2 and lactic and acetic acid.

Once parameters have been entered into the system, a prediction is produced. The prediction will usually be in the form of a growth curve (Figure 1), but parameters such as lag time, time to reach a specified microbial level and level at a specified time can also be predicted.

THE APPLICATION

Predictive models are a very quick, efficient and cost effective way of assessing the potential for growth of microorganisms under specific conditions without needing practical studies.

During product development, a product formulation may be changed several times before being finalised. Often there can be a pressure on time and money and therefore it is not possible to practically evaluate the shelf life of all possible formulations. It is important that the potential for growth and/or survival of all relevant organisms is assessed and practical trials are carried out on the final formulation. However, limiting the amount of practical work required will save time and money.

It is not only during product development that the potential for microbial growth is important; other examples include a product being subjected to a slightly elevated temperature or if there has been a problem with formulation of a batch of product.

With regards to spoilage organisms it is usually the time to reach a specified target level that is the most important parameter. However, for pathogenic organisms such as *Salmonella* or *C. botulinum*, it is the time for growth to begin (lag time) that is the most important parameter as any growth at all has to be avoided. For some organisms like *S. aureus* and *B. cereus*, which produce toxins and cause food poisoning when a specified level is reached, predictive systems can be used to predict the time taken to reach these levels. Predictive systems can also be used to predict if *Listeria monocytogenes* could reach a level of 100 cfu/g during a product's shelf life (the limit set in EU hygiene legislation).

Growth of spoilage organisms can be modelled using a Campden BRI developed system known as FORECAST. Also included in the FORECAST system are models covering specific food commodities. These models are based on the specific spoilage organisms for the relevant food commodity. There are currently models for fish, meat, fresh produce and yeasts in fruits and drinks, plus a range of models relevant to acidified foods. The acidified foods models and yeast in fruit and drinks models give predictions of time to growth rather than producing growth curves.

Figure 1 Microbial growth curve

Predictions are carried out by Campden BRI and a report including growth curves and time to reach specified levels is produced and interpreted for the Client.

In order for a prediction to be produced, the client must provide the following information: pH, water activity, % salt (all can be measured at Campden BRI) and temperature (either one static temperature or a fluctuating profile). Campden BRI can then advise as to which organisms or commodity models would be most relevant. For some models such as the acidified food models, level of preservative is also required. The models currently available in the FORECAST system are detailed below in Tables 1 to 4.

Acid tolerant organisms

The models developed for acidified foods are based on 3 groups of organisms. These models have been termed: cold fill spoilage, which includes acid adapted yeasts, moulds and lactic acid bacteria; cold fill pathogens, which includes *E. coli*, *S. aureus* and *Salmonella*; and hot fill spoilage, which includes sporeformers such as *B. coagulans* and *C. pasteurianum*.

Predictions generated from these models are based on 5 categories: category 1 growth in 1-14 days, category 2 growth in 15-30 days, category 3 growth in 31-60 days, category 4 growth 61-182 days, category 5 no growth in 6 months.

Data was produced and models were generated based on pH, Aw and preservative level as detailed in Table 2. Further cold fill spoilage and hot fill spoilage models were also produced based on amount of salt, sugar, acid and preservative plus acid type (Table 3) and a further cold fill spoilage model was produced based on pH, salt, sugar and preservative amount (Table 4).

Safety and stability of acetic acid based mayonnaises and sauces can also be assessed using the equations given in the CIMSCEE code. There are safety and stability formulae, both of which are based on pH, and amounts of acetic acid, salt and sugar in the water phase. A numerical value is calculated which has to be greater than 63 for the product to be considered safe and/or stable.

Campden BRI is able to perform these calculations for clients. If the required values are not available, Campden BRI can analyse products for salt, sugar, water, pH and acetic acid level.

Food pathogens

Pathogen predictions can be carried out using the Combase predictor system. This system is internet based and predictions are generated online. This system is freely available via *http://www.combase.cc/predictor.html*

Campden BRI is able to generate pathogen predictions using Combase predictor and interpret them for clients who do not have a microbiological background. The Combase system contains growth models but also thermal death models. These thermal death models predict log reductions of an organism at a specified temperature. There are also survival models for *Salmonella* and *Listeria* which predict the log reduction of the organism at various pH values, temperatures and salt levels. This can be useful to assess if pathogens can survive in, for example, acidified foods. Another useful model is one that allows the potential for *C. perfringens* growth to be predicted during cooling. The details of models and input parameters for models contained in the Combase predictor system are detailed in Tables 5 and 6.

A further set of pathogen models in the USA, known as the pathogen modelling program (PMP), is freely available via the internet. Details of the models included are given in Table 7. These can be generated online at *http://www.arserrc.gov/pmponline.htm* or a software package can be downloaded for stand-alone use. The stand alone system has more models available for use than the online system. Details of these additional models are given in Table 8.

For further information on how models can be used, contact:

Linda Everis Tel: 01386 842063 Fax: 01386 842100 Email: I.everis@campden.co.uk

or

Gail Betts Tel: 01386 842071 Fax: 01386 842100 Email: g.betts@campden.co.uk

Model	Temperature	NaCl	Equivalent	рН	Other Conditions
	(°C)	(% aq)	Aw		
Pseudomonas	0 - 15	0.0 - 4.0	1.00 - 0.977	5.5 - 7.0	Fluctuating
					temperature, pH, salt
Bacillus spp.	5 - 25	0.5 - 10	0.997 - 0.935	4.0 - 7.0	Fluctuating
					temperature, pH, salt
Enterobacteriaceae	0 - 27	0.5 - 10	0.997 - 0.935	4.0 - 7.0	Fluctuating
					temperature, pH, salt
Yeasts (chilled	0 - 22	0.5 - 10	0.997 - 0.935	2.6 - 6.0	Fluctuating
foods)					temperature, pH, salt
Yeasts	0 - 22	-		2.0 - 7.0	0 - 60% Sucrose (w/v)
(fruit/drinks)					0 - 20% Ethanol (v/v)
(time to growth)					Potassium sorbate
					0 - 1000(ppm)
Lactic acid bacteria	2 - 30	0.5 - 10	0.997 - 0.935	3.0 - 6.0	Fluctuating
					temperature
Meat spoilage	2 - 22	0 - 6	1.00 - 0.964	4.6 - 7.0	0 - 240 KNO ₂ (ppm)
					Fluctuating
					temperature, pH, salt
Fish spoilage	2 - 22	0 - 6	1.00 - 0.964	4.5 - 8.0	Fluctuating
					temperature, pH, salt
Fresh produce	2 - 25	-	-	-	
TVC					
Fresh produce	2 - 25	-	-	-	
Enterobacteriaceae					
Fresh produce	2 - 25	-	-	-	
lactic acid bacteria					
Fresh produce	2 - 25	-	-	-	
Pseudomonas					
Enterobacteriaceae	52 to 64	0 - 8	1.00 - 0.95	4.0 - 7.0	Predicts D value
death model					
Bacillus (time to	8 - 45	0.5 - 10	0.997 - 0.935	4.0 - 7.0	
growth)					

Table 1Spoilage models available in FORECAST

Organisms	Prediction	рН	Aw	Salt %	Preservative
	categories/time to			w/v	ppm
	growth (G)				
Cold fill spoilage	1 = G in 14d	2.8 - 5.0	0.85 - 1.00	0.5 - 18	Benzoate
(yeasts, moulds,	2 = G in 15 - 30d				Sorbate
lactics)	3 = G in 31 - 60d				0 - 2000 (in total)
	4 = G in 61 - 182d				
	5 = NG in 182d				
Cold fill pathogens	1 = G in 120d	3.9 - 5.0	0.87 - 1.00	0.5 - 16	Benzoate
(E. coli, S. aureus,	2 = NG in 120d				Sorbate
Salmonella)					0 - 2000 (in total)
Hot fill spoilage	1 = G in 14d	3.7 - 5.2	0.86 - 1.00	0.5 - 18	Benzoate
(sporeformers)	2 = G in 15 - 30d				Sorbate
	3 = G in 31 - 60d				0 - 2000 (in total)
	4 = G in 61 - 182d				
	5 = NG in 182d				

Table 2 Models for acidified foods in FORECAST

Key: G = Growth

NG = No Growth

Table 3 Models for acidified foods in FORECAST

Organisms	Prediction	Salt*	Sugar*	Acid %	Acid type	Preservative
	categories	% w/v	% w/v			ppm
Cold fill	1 = G in 14d	0 - 4	0 - 45	0.5 - 4.0	Acetic	Benzoate
spoilage	2 = G in 15 - 30d				Lactic	Sorbate
(yeasts,	3 = G in 31 - 60d				Citric	0 - 2000 (in total)
moulds,	4 = G in 61 - 182d					
lactics)	5 = NG in 182d					
Hot fill	1 = G in 14d	0 - 4	0 - 45	0.5 - 4.0	Acetic	Benzoate
spoilage	2 = G in 15 - 30d				Lactic	Sorbate
(sporeformers)	3 = G in 31 - 60d				Citric	0 - 2000 (in total)
	4 = G in 61 - 182d					
	5 = NG in 182d					

Salt and sugar cannot exceed a total of 45%.

Key: G = Growth

NG = No Growth

Table 4 Models for acidified foods in FORECAST

Organisms	Prediction categories	Salt* % w/v	Sugar* % w/v	рН	Preservative ppm
Cold fill spoilage	1 = G in 14d	0 - 4	0 45	2.9 - 6.1	Benzoate
(yeasts, moulds,	2 = G in 15 - 30d				Sorbate
lactics)	3 = G in 31 - 60d				0 - 2000 (in total)
	4 = G in 61 - 182d				
	5 = NG in 182d				

Key: G = Growth

NG = No Growth

Table 5Combase Predictor growth models

Model	Temperature	NaCl	Aw	рН	Other conditions
	(°C)	(% aq)			(only one extra
	(fluctuating				condition
	temperature				permitted per
	profiles can				prediction)
	be used)				
Aeromonas hydrophila	2 - 37	0.0 - 4.5	1.00 - 0.974	4.6 - 7.5	-
Bacillus cereus	5.0 - 34.0	0.0 - 9.4	1.00 - 0.94	4.9 - 7.4	CO ₂ 0 - 60%
Bacillus licheniformis	13.0 - 34.0	0.0 - 13.5	1.00 - 0.907	4.0 - 7.6	-
Bacillus subtilis	10.0 - 34.0	0.0 - 10.3	1.00 - 0.933	4.3 - 7.8	-
Brochothrix	0.0 - 30.0	0.0 - 8.0	1.00 - 0.95	5.5 - 7.0	-
thermosphacta					
Clostridium botulinum	4.0 - 30.0	0.0 - 4.5	1.00 - 0.974	5.1 - 7.5	-
(non-proteolytic)					
Clostridium botulinum	14.0 - 30.0	0.0 - 7.5	1.00 - 0.954	4.7 - 7.2	-
(proteolytic)					
Clostridium perfringens	15.0 - 52.0	0.0 - 5.0	1.00 - 0.971	5.0 - 8.0	-
E. coli	10.0 - 42	0.0 - 6.5	1.00 - 0.961	4.5 - 7.5	0 - 100% CO ₂
Listeria monocytogenes/	1.0 - 40	0.0 - 10.2	1.00 - 0.934	4.4 - 7.5	0 - 100% CO ₂
innocua					
Listeria monocytogenes/	1.0 - 40	0.0 - 11.4	1.00 - 0.924	4.4 - 7.5	0 - 20,000ppm
innocua					lactic acid
					0 - 10,000ppm
					acetic acid
					0 - 200ppm
					NaNO ₂
Salmonella	7.0 - 40	0.0 - 4.6	1.00 - 0.973	3.9 - 7.4	0 - 100% CO ₂
					0 - 200ppm nitrite
Staphylococcus aureus	7.5 - 30.0	0.0 - 13.5	1.00 - 0.907	4.3 - 7.1	-

Model	Tempera (°C) (fluctua tempera profiles	ature NaC (% a iting iture can	;1 q)	Aw	рН	Other conditions (only one extra condition permitted per prediction)
	be use	ed)				
Yersinia enterocolitic	a -1 - 37	7.0 0.0 -	7.0 1.00) - 0.957	4.4 - 7.2	0 - 10,000ppm lactic acid 0 - 80% CO ₂
Pseudomonas	0 - 2	0 0-6	.5	0.961	5 - 7.4	
Shigella flexneri	15 - 3	37 0 -	5	0.971	5.5 - 7.5	0 - 1000 NO ₂
Perfringens predicted	or - cooling mo	del	•			
Cured/uncured	р	H 5.2 - 8.0		0 - 4% N		aCl
Non thermal death	Temp (°C)	r F	H	NaC	SI (%)	Aw
L. monocytogenes/ innocua	0 - 20	3.5	3.5 - 7.0		25	0.793 - 1.0
Salmonella	0 - 40	4.3	- 7.5	0 - 26		0.781

Table 6Combase Predictor thermal death models

Model	Temperature	NaCl (% aq)	Aw	рН
	(°C)			
Bacillus cereus	90 - 100	2.5 - 7.5	0.986 - 0.954	4.5 - 7.0
Clostridium botulinum (non-proteolytic)	80 - 95	0 - 5.0	1.00 - 0.971	4.1 - 7.3
E. coli	54.5 - 64.5	0 - 8.4	1.00 - 0.947	4.2 - 8.0
Listeria monocytogenes/innocua	60 - 68	0 - 9.0	1.00 - 0.943	4.2 - 7.0
Salmonella	54.5 - 65	0 - 0.6	1.00 - 0.997	4.0 - 7.1
Yersinia enterocolitica	52 - 60	0.65	1.00 - 0.961	4.2 - 7.0
Brochothrix	40 - 55	0 - 2.0	1.00 - 0.989	5 - 7.0

Table 7Models included in the Pathogen Modelling program on-line version

PMP Growth Models - Broth Culture							
Model	Temp	NaCl	Aw	рН	Initial	Other conditions	
	(°C)	(% aq)			level (log		
					cfu/g)		
Aeromonas hydrophila	5 - 42	0.5 - 4.5	0.997 - 0.974	5.3 - 7.3	3 - 5.9	0 - 150ppm NaNO ₂	
aerobic							
Aeromonas hydrophila	5 - 30	0.5 - 3.5	0.997 - 0.980	5.3 - 7.3	3 - 5.9	0 - 150ppm NaNO ₂	
anaerobic							
Bacillus cereus aerobic	5 - 42	0.5 - 5.0	0.997 - 0.970	4.7 - 7.5	3 - 5.9	0 - 150ppm NaNO ₂	
Bacillus cereus	10 - 42	0.5 - 5.0	0.997 - 0.970	5.0 - 9.0	3 - 5.9	0 - 150ppm NaNO ₂	
anaerobic							
Escherichia coli	5 - 42	0.5 - 5.0	0.997 - 0.970	4.5 - 8.5	3 - 5.9	0 - 150ppm NaNO ₂	
O157:H7 aerobic							
Escherichia coli	5 - 42	0.5 - 5.0	0.997 - 0.970	4.5 - 8.5	3 - 5.9	0 - 150ppm NaNO ₂	
O157:H7 anaerobic							

Model	Temp	NaCl	Aw	рН	Initial	Other conditions	
	(°C)	(% aq)	(% aq) level (log				
					cfu/g)		
Listeria	4 - 37	0.5 - 10.5	0.997 - 0.928	4.5 - 7.5	3 - 5.9	0 - 150ppm NaNO ₂	
monocytogenes (NaCl)							
aerobic							
Listeria	4 - 37	0.5 - 5.0	0.997 - 0.970	4.5 - 8.0	3 - 5.9	0 - 150ppm NaNO ₂	
monocytogenes (NaCl)							
anaerobic							
Staphylococcus aureus	10 - 42	0.5 - 12.5	0.997 - 0.911	4.5 - 9.0	3 - 5.9	0 - 150ppm NaNO ₂	
aerobic							
Staphylococcus aureus	12 - 42	0.5 - 16.5	0.997	5.3 - 9.0	3 - 5.9	0 - 150ppm NaNO ₂	
anaerobic							
Shigella flexneri	10 - 37	0.5 - 5.0	0.997 - 0.970	5.0 - 7.5	3 - 5.9	0 - 150ppm NaNO ₂	
aerobic							
Shigella flexneri	12 - 37	0.5 - 4.0	0.997 - 0.977	5.5 - 7.5	3 - 5.9	0 - 150ppm NaNO ₂	
anaerobic							
	-	Th	ermal Death Mod	iels			
Model	Temp	NaCI	Aw	рн	Other conditions		
	(°C)	(% aq)					
Listeria	55 - 65	0 - 6.0	1.00 - 0.963	4 - 7	Sodium pyr	ophosphate 0 - 0.3%	
monocytogenes							
(ground beet)							
Madal		1	Other Models			an a bilitic a	
Wodel		la soulation	Input factors	C.			
L. monocytogenes transf	er		level (log ctu/g pe	Calculates L. monocytogenes			
		1 emperatu	re (°C)	from alice 1 40			
		Allachmen	t time (mins)	from slice 1 - 40			
Crowth of L monoputage	noo in o	A list of por		is is given	Coloulatoo in	aragagin loval of	
seafood salad		Tomp 4.0		<i>L</i> monocytogenes after time and			
30000 30100		Mayonnais	120 onl 37 51	L. monocytogenes alter time and			
		Time durat	$e_{\rm p11} - 3.7 - 3.1$	indicates tim			
	Time interv	al 0 1 - 2 days					
	Initial level	on seafood 0 - 7.0					
	Level of co	ncern 1.0 - 7.0 cfi					
	Lag or no la	aq					
Growth of L. monocytoge	Anaerobic	only	Calculates in	crease in level of			
ground ham	Temp (°C) 6 - 36			L. monocyto	genes over 250h		
°	Sodium lac	tate 1 - 4.2%					
	Sodium dia	cetate 0.05 - 0.20					
		Initial level	1 - 3.0 log cfu/g				
Salmonella Typhimurium	in	Temp (°C)	10 - 40		Calculates g	rowth of Salmonella	
ground chicken with con	npetitive	Initial level	set at 0.6 log cfu/	g	over 154h		
microflora				-			

Table 8

Additional models included in pathogen modelling program - stand-alone version 7.0 not available via online

Model	Temp (°C	C) Nacl	(%	Aw	1	рН		evel	Other	
		aq	aq)				log cfu	ı/g	conditions	
Salmonella	10 - 30	0.5 -	0.5 - 4.5		- 0.974 5.6 - 6		3.0 - 5	5.9	N/A	
Listeria	4 - 37	-		0.928 - 0	0.997	4.5 - 7.5	3.0 - 5	5.9	Sodium nitrite	
monocytogenes									0 - 150ppm	
Aw (aerobic)										
Listeria	4 - 37	0.5 -	5.0	0.997 -	0.97	4.5 - 8.0	3.0 - 5	5.9	Sodium nitrite	
monocytogenes									0 - 150ppm	
Aw (anaerobic)										
Yersinia	5 - 42	0.5 -	5.0	0.997 - (0.970	4.5 - 8.5	3.0 - 5	5.9	Sodium nitrite	
enterocolitica									0 - 150ppm	
aerobic										
			The	ermal inac	tivatio	n		-		
		Temp	N	acl (%)		Aw	рН	Ot	her conditions	
		(°C)								
Non proteolytic		70 - 90		0 - 3	1.00	- 0.983	5 - 7		Sodium	
C. botulinum in tu	ırkey							F	oyrophosphate	
slurry									0 - 0.3%	
<i>E. coli</i> O157:H7 i	n	55 - 62.5		0 - 6	1.00	- 0.963	4 - 8		Sodium	
simulated beef gr	avy							۲	oyrophosphate	
									0 - 0.3%	
Listeria monocyto	ogenes in	55 - 65		0 - 6	1.00 - 0.963		4 - 8		Sodium	
ground beef									oyrophosphate	
									0 - 0.3%	
			S	urvival m	odels					
		Temp (°C)		Naci	A	Ŵ	рН	Ot	her conditions	
E. coli 0157:H7		4 - 37	0.	5 - 15	0.997	- 0.887	3.5 - 7.0	Lac	tic acid 0 - 2%,	
								Nal	NO ₂ 0 - 75ppm	
L. monocytogene	L. monocytogenes (NaCl) 4 - 42		0.5 - 19		0.997	- 0.845	3.2 - 7.3	Lac	tic acid 0 - 2%,	
							Nal		NO ₂ 0 - 150ppm	
S. aureus		4 - 37	0.	5 - 20	0.997 - 0.834		34 3.0 - 7.0		Lactic acid 0 - 1%,	
								Na	aNO ₂ 0-200ppm	
Salmonella		5 - 42	0.	5 - 16	0.997	- 0.887	3.5 - 7.2	Na	NO ₂ 0 - 200ppm	
	<u> </u>			Other mo	models					
	Mod	el			Model Capability					
<i>C. botulinum</i> (pro	teolytic) co	oling profile	mode		Calculates increase in numbers during cooling of					
		<u> </u>			broth					
<i>C. perfringens</i> cooling profile model					Calculates increase in numbers during cooling of					
				beef br	oth, chick	en or cured	beef			
Salmonella Typhimurium irradiation					Predicts decline in numbers following 0 - 3.6kGy					
					treatment of chicken					
E. coli O157 irradiation					Predict	s decline	in numbers	tollow	/ing 0 - 2.0 kGy	
					treatme	ent in beet	tartar	<u> </u>		
Spollage flora (ch	licken leg) i	rradiation			Predicts decline in numbers following a 0 - 3.6kGy					
Time a ta truck inte		> hat the			treatment in chicken meat					
i ime to turbidity p	proteolytic (. potulinum			Predict	s probabil	ity of growth	n at 1	5 - 34°C,	
					pH 5 - 7.2, Nacl (%) 0 - 4					

Model	Model Capability
Non proteolytic C. botulinum	Predicts probability of growth at 5 - 28°C,
	pH 5 - 7.0, 0 - 4% Nacl
Time to toxin production for <i>C. botulinum</i> in fish	Lag time predicted at 4 - 30°C, initial spore level
	-2 - 4.0 log cfu/g and initial aerobic count
	-2 - 3.0 log cfu/g